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Abstract  

In this study attempts are carried out to determine the stress distributions along the 

involute curve of the spur gears. For this purpose photoelastic method and 

NASTRAN/MSC software are used. The results showed that the maximum applied stress 

occurs on the top land of teeth, and then that amount is decreased when the applied load 

positions change toward the bottom land, i.e. during rotation in practical. The results of 

NASTRAN method showed that the applied stress on the fillet radius is decreased, with 

lowering the load location from topwards to downwords of gear teeth, and the minimum 

applied stresses are obtained, between the pitch circle and dedendum circle, in particular 

at 1.5-1.6 module of the total tooth height equals 2.25 module, and then the applied 

stresses are increased again. However, in photoelastic method the applied stresses were 

decreased continuously to the bottom land. The reasons behind such results can be 

attributed to the type of failure theories, in NASTRAN software, that are used for stress 

calculation characterization, i.e. considering types of applied stresses, such as bending, 

direct compressive, and shear stresses. Different standard mathematical equations are 

used to compare the results between theoretical and practical methods of stress gears.  

Practical calibration is used to determination the fringe order value of photoelastic 

materials (PLM-4) used in this study. 

 

Introduction 

Essentially, since gears have not a uniform shape, stress determination processes of gears 

along the entire surface have become important subjects by many investigators, and 

relevant organizations. In general, designers and manufactures recognized a fillet region 



 

in gears as a highest stress point. In this region, stress concentration factor (Kt) is a main 

consideration of stress distribution in gears. Therefore, in addition to many theoretical 

equations, and diagrams, there are several practical methods, such as photoelasticity, 

strain gauges, have been established for this purpose [1,2]. For instance, over 50 years 

ago, both Dolan and Broghamer investigated the photoelasticity method for recognizing 

the stress distribution pattern on spur gears. They determined Kt as a ratio between 

maximum stress (σmax.) on the fillet region, and nominal stress (σnom.) on other uniform 

sections. This method still constitutes as a primary source of information on Kt [1-4]. 

The two previous papers showed complete results regarding the effect of critical 

geometries, height, (h), and thickness (t), [5], and pressure angle φ [6] on Kt of spur 

gears, using photoelastic method, and NASTRAN software. In this study, the profile of 

stress change along the involute curve would be shown using a ratio σ / σmax., where σ is 

a stress of the fillet radius when load applied locates at any point along the involute 

profile, and σmax. is stress of the fillets radius when the load applied locates at the top land 

of the gear tooth.  

In photoelastic method, a connection between optical and mechanical characteristics is 

given via the stress optic low [7]:  

σ1 - σ2 = (Nf*f /b)                                                                                               1 

Where; σ1 and σ2 are the principal stresses at the point, Nf is a fringe number, b is a 

thickness of the photoelastic model (mm), and f is the stress optic constant 

(MPa.mm/fringe). Although Nf is standardized and evaluated in literatures [8-11], and f 

would be defined by photoelastic material suppliers. Essentially these constants depend 

on the optical properties of the material and propagated light. In the other mean, the 

values of photoelastic materials may vary with the batch of resin, temperature, and age. 

For this reason it is always necessary to calibrate each sheet of photoelastic material at 

time of the test.  

On the other side, in addition to practical methods, there are a lot of equations have been 

derived to calculate the applied stresses on gears [1]. Such equations mainly used height 

(h), and thickness (t) of the gears as a two main parameters. However, with changing the 

approaches of h, and t descriptions, the values of stress also would be changed. In order 

to show those differences, four different equations are selected in this study.  



 

 

Experimental Work 

Three different groups of spur gears are used in this study, first; φ = 20o, N = 18; second φ 

= 20o, N = 26, third φ = 25o, N= 18. For each group, four different m; 6, 10, 14, and 20 

mm, three different face widths b; 10, 17, 25.4 were prepared. Appendix 1 defines and 

names each sample for gear teeth selected in this study.  
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Figure 1; a) involute profile of the spur gear, m=20mm, at different specifications. 

b) spur gear depth division according to AGMA. 

c) the position of applied loads along the involute cure and their angle of action (θ). 

d) the relation between (θ), and applied load position.  

 

Figure 1a shows that the involute profiles change with gear specifications [1,4]. The 

figure showed that with increasing the number of teeth, the base circle will be larger and 

less curvatures. Figure 1b shows the total depth of the spur gear tooth, according to 

AGMA standards, which equals 2.25m, i.e. addendum (a) = module (m), and dedendum 

(b) = 1.25 m. Figure 1c shows the six positions of load actions along the involute curve. 

Figure 1d shows the relationship between angle of action, θ, and the radial distance (dr) 



 

from the top land toward the center of the gear which are indicate as 0.5 m, 1 m, 1.5 m, 

etc. The figure showed that the maximum (θ) occur at the tip of the gear teeth, and these 

(θ) are decreased when the load moves along the involute profile toward the fillet radius.  

Five to six angles of actions are used in this study, which are; 

For φ = 20º, N =18; angles of action θ were 32.76, 26, 19, 16, 12, and 4.12˚. 

For φ = 20º, N =26; angles of action θ were 29.115, 23, 16, 9, and 2.9799˚. 

For φ = 25º, N =18; angles of action θ were 39, 30, 21, 16, 12, and 4.11˚. 

For each (θ), four load values Fn, (Fn1 = 29.43, Fn2 = 70.5, Fn3 = 97.88, and Fn4 = 

125.26 N, were applied on each tooth. For more details see references [5,6]. 

To compare the results which were obtained from the practical method (photoelasticity) 

with numerical method (MSC/NASTRAN), all the gear teeth samples are mentioned 

above with their specifications (dimensions, load values, load locations are repeated 

exactly and prepared for MSC/NASTRAN method. 

 

1- Base plate 
2- Support
3- Pressure piece 
4- Dial gauge
5- Load ring
6- Connect piece
7- Compression nut
8- Built-in pins
9- Cross transverses
10- Flatten pressure piece
11- Lock nut
12- Threaded spindle

Fixing device

Ring force

Figure 2 Fixtures and loading device arrangements of photoelastic method.   

 

In order to apply loads on the gear tooth models, as in actual service, it is necessary to 

design and construct a suitable loading device. In this investigation, certain fixtures were 

prepared and constructed with loading frame to constraint the samples and apply the load 

uniformly on gear teeth faces, and the applied load would be normal to the involute 

profile at any point of contact. The frame consists of several parts, which locates between 

the polarizer and analyzer of the photoelastic equipment, as shown in Figure 2. 



 

All of the parts are re-constrained by fixing on the thick plate to restrict motions or 

unbalancing during the load application on the gear tooth. The ring force gauge loading 

associates with the dial gauge division, and should be calibrated to determine the applied 

load. Although every ring force manufacturer is supply a calibration certification table. A 

new calibration for the ring force is carried out to get very accurate results.  In order to 

calculate the net applied load on the gear tooth, the following parameters should be 

considered [12]: 

Rd = Dial gauge reading div, Cm = Mean calibration value N/div, We = Weight of the load 

device N, Fn = Net load N. 

Fn = (Rd ×  Cm) + We                                                                                      

 

A – Semi dark field Nf ≈ 0
B- Fringe Order (Nf = 0.45)
C- Fringe Order (Nf = 0.60)
D- Fringe Order (Nf = 0.79)
E- Fringe Order (Nf = 0.90)
F- Fringe Order (Nf = 1.00)
G- Fringe Order (Nf = 1.06)
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Figure 3 Determination the fringe order values (Nf) using disk method. 

 

The results and calculations showed that the values of mean calibration value (Cm), and 

weight of load device (We) are equal to 1.369 N/div., and 29.43 N respectively.  

On the other side, in order to determine Nf, and f values accurately, a disk with 58.5 mm 

diameter of the photoelastic material (PLM-4B) is prepared. This material is used by 

other investigators [13]. The disc model was used for this purpose by other investigators 

[8-11]. The disk was put on the fixture, with increasing the diametral compressed load 

values, the fringes are appeared gradually at the center point of the disk as shown in 

Figure 3.  Furthermore, in order to correlate between the applied load and fringe orders , 



 

the net load values plotted on the y-axis, (using previous calculation for getting the net 

load), as fringe orders on the x-axis, shown in Figure 4 and, the slope of this graph 

considered as Fn/Nf , according to the following equation [7-11];  

f = 
f

n

N
F

Dπ
8                                                                                                    2  

The value of Fn/Nf  is a slope of curve between Fn and Nf, and equals 234.57 N/fringe. On 

the other hand, it is obvious that the value of f is independent on the model thickness b.  
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Figure 4 The relation between net load and fringe orders to determine the material fringe 

value, use the values seen in the table in the right side. 

 

The results from equation 2 showed that the average value of (f) equals 10.216 

N/mm.fringe. Accordingly, after knowing f, and the slope Fn/Nf, the values of Nf values 

can be calculated separately against each applied load. Therefore, with using such 

calibrated Nf values, Equation 1 can be used directly to calculate the applied stress at any 

applied load Fn. On the free boundary of the model, either (σ1) or (σ2) is equal to zero; 

hence, the stress tangential to the boundary can be determined directly from the equation 

[7]. 

 

 

 



 

Results 

Figure 5 shows the stress distribution, using NASTRAN/MSC software, along the 

involute curve, for more details see the previous papers [5,6]. The figure showed the 

highest ratio of (σ/σmax) when the load is applied on the tip of the gear tooth, i.e. (σ/σmax) 

equals unity. While this ratio decreased with increasing the distance from the top land of 

the gear tooth to the bottom. Where the height reaches (1.6 modules) the ratio (σ/σmax) 

approximately equals (0.5). Figures 2b, and 2c show this distribution for (φ = 20º, N =26) 

and (φ = 25º, N =18) respectively. Figure 5d shows samples in each group to show the 

similarity of the variation of (σ/σmax).  
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Figure 5 NASTRAN results show the ration (σ/σmax) along the involute curve. 

 

Figure 6 shows the same stress ratio (σ/σmax) with using photoelastic method. Equation 1 

is used for calculating the applied stress on the entire involute of gear teeth, by 

photoelastic method, using Fn, and load values defined in figure 4. The above two figures 

showed that (similar to the previous condition), the ratio (σ/σmax.) decreased with 



 

decreasing the load applied position with respect to module, until reaches (1.6m) 

approximately and beyond that the (σ/σmax.) increased again sharply. Since the results of 

photoelastic results are obtained by practical experiments, due to a limited access of the 

tools used as fixtures to apply the loads, it was not easy to apply the loads below dr=1.6m 

accurately, especially in gears that have had small modules.  

This procedure, i.e. stress calculation, had been done by increasing the applied load 

gradually till the fringes are appeared. The applied stress values were taken for both sides 

of the gear tooth at fillet radius region (tension and compression) which almost has 

maximum stress, as shown in Figure 7. The figure showed, in general, that tensile side of 

the fillet region has higher Kt values than compressive side; see references 4, and 5 for Kt 

calculations.  

As described before, i.e. the ratio (σ/σmax.) is decreased with decreasing the distance 

between the applied load location and the fillet radius region. This variation is clearer in 

MSC/NASTRAN than photoelastic method.  
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Figure 6 Relation between (σ/σmax) and (dr)  by photoelastic method, for (φ = 20º, N = 18) 

and Fn = 97.88 N 

 

On the other hand, in spite of all failures that occur in gear teeth would be in tension side 

of the fillet radius by fatigue phenomenon [1-6]. In order to compare the stress values in 



 

both sides, tension and compression, in the fillet radius region, the relations between Kt 

and module accomplished. Figure 8 shows the variations of Kt values with module. For 

illustration, samples of φ = 20º, N = 18, b = 10 mm, and Fn= 29.43 N are selected. The 

figure showed that the Kt values in tension side are higher than the compression for all 

modules. This phenomenon remains the same for other applied loads values and other 

variables like (φ, N, b).  
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Figure 7 The Kt values in tension and compression values, a) NASTRAN,  

b) Photoelastic. 

 

In the other side, in order to compare the applied stress values determined by 

photoelastic, (MSC/NASTRAN) and theoretical equations in the fillet region of the gear 

samples selected in this study. Four different theoretical equations were selected in 

addition to both photoelastic and (MSC/NASTRAN) methods. These four theoretical 

methods are DIN 3990, DIN 3990/E, JGMA and Niemann/GDIN [1,3,4], see Appendix 

2. 

Figure 8a shows the relation between the applied stress value and module using all 

theoretical and practical methods selected in this study for (φ = 20º, N =18, b = 10 mm) 

and (Fn = 29.43 N). All the applied stress values that obtained here are determined at fillet 

region. The figure showed that the applied stress values decreased with increasing the 



 

module. This phenomenon is clear for all methods, while it is more obvious for JGMA 

method.   
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Figure 8 Relation between calculated applied stresses with gears parameters. 

a- The relation between stress and face width for A1, to A3. 
b- The relation between stress and module for A11, and C11 according to φ. 
c- The relation between stress and module for groups A11, and B11 according to N. 
d- The relation between stress and face width for group (A1, to A3 ). 

 

These results can be attributed to the equation formula itself that used for each method. 

Figure 8b shows the relation between the applied stress and module for two different 

pressure angles (φ = 20º, 25º) with using (N = 18, b= 10 mm, Fn= 29.43 N). The figure 

shows that with increasing the pressure angles the applied stress decreased and this result 

coincide with all other approaches. Figure 8c shows the relation between the applied 

stress and module for different number of teeth. For this purpose two different number of 

teeth selected which are 18 and 26 with using (φ = 20º, b = 10 mm, Fn = 29.43 N). The 



 

figure showed that with increasing the number of teeth the applied stress decreased, and 

this result coincides with all other approaches. For this purpose in all design calculations, 

the applied stress usually calculated on the pinion instead of the gear, if both made with 

the same material. Figure 8d shows that the JGMA has maximum value compared with 

other methods. 

 

Discussion 

Figure 5 showed that the applied stresses are decreased when the load positions are 

moved from the top land of gear teeth toward the fillet radius. The ratio (σ/σmax) reached 

0.5 at (dr) values equal around 1.4-1.6. This result can be explained according to the 

approaches that had used by Lewis for analyzing the applied loads on the involute profile 

in gears [1-6]. He described the gear tooth as a cantilever beam, exposed to bending 

moment. Because the involute profile of gears, i.e. not straight, any applied load is 

divided in to two main components, tangential force, Ft, (causes bending, and shear 

stresses), and radial force, Fr, (causes direct compressive stress), as shown in Figure 9. 

Therefore, very simply the applied bending stress, at fillet radius, can be arranged as 

below;  

σ  = I
cM                                                                                          3      

Were, for each cross sectional area, M: is bending moment equals Ft*d,  

c: the distance from the neutral axis to the edge layer, and I: moment of inertia.  

Although Ft causes small amount of shear stresses over cross sections. At fillet radius 

positions (A, and B) the shear stresses are zero. Hence, shear stresses can be neglected in 

such calculations. Therefore, it is obvious that besides compresses stresses, the main 

applied stress on the fillet radius on gear teeth is the bending stress.   

The figure showed that at fillet radius region A, there is a positive (tensile) bending stress 

(σb) , while at fillet radius region B, there is a compressive σb. Moreover, due to Fr 

component, there is a direct compressive stress (σc) covering the whole cross section 

area. Therefore, by summing the two normal stresses (σb+σc) at each filet region, side A 

gives low tensile stress value, while side B has a higher compressive stress.  



 

In terms of the variations of (σ/σmax) with (dr) along the involute profile, were seen in 

Figures 5, and 6, such results can be attributed to the two immediate opposite variables 

[1-4]. First, decreasing the applied stress due to decrease the length (d) of the gear tooth, 

and frequently decrease the bending moment, second, increasing the applied stress due to 

decreasing θ values. In the other mean, the first variable (decreasing the height-d) has a 

main influence to reducing the applied bending stress, till the applied load reaches around 

(1.5m), the ratio (σ/σmax) approximately equals (0.5). However, beyond that point, these 

effects changed inversely i.e. the second effect (changing reducing θ values) has more 

effect, i.e. Fn=Ft where θ=0, then the (σ/σmax) increased again after (1.6m).  

 

θ

Fr
=F

n 
C

os
 θ

Fn

d

c
A B

-

--

+ A

B

σb σC

+ =

A

B

τ

τmax

σb: bending stress
σc: compressive stress 
τ: shear stress

σ

c
c

θθ

Fr
=F

n 
C

os
 θ

Fn

d

c
A B

-

--

+ A

B

σb σC

+ =

-

--

+ A

B

σb σC

+ =

A

B

τ

τmax

σb: bending stress
σc: compressive stress 
τ: shear stress

σ

c
c

 
Figure 9 Load and stress analysis on spur gear tooth according to Lewis approach. 

 

In terms of reducing the ratio (σ/σmax), figure 5 showed that the obtained results from 

NASTRAN method, showed that this ratio is decreased till (dr =1.6m) and was equal to 

0.5. After that height, it increased again. However, the results obtained by photoelastic 

method showed decreasing continuously. These results can be attributed to the fact that 

NASTRAN software is software; it is working based on numerical and finite element 

analysis. Moreover, their calculations also based on one of the common failure theories, 

such as Von-Mises, Tresca –Guest, etc [4]. Figure 8 proved that each standard formula 

and equation would give different results of the applied stress on the fillet radius in spur 



 

gears. Therefore, all the results in NASTRAN software depends on the characterization 

ways of stress calculation, i.e. using each formula of stress calculation, and failure theory 

might give different results. However, in photoelastic method, the base of calculation is 

natural behavior of photoelastic material facing applied lights, therefore it is work based 

on optical analysis.  

The results in figures 5-7 showed that the values obtained by (MSC/NASTRAN) were 

more accurate and realistic. In the other mean, the NASTRAN results showed more 

linearity and systematic relations with all gear specifications and variables. This 

phenomenon can be explained in terms of the results obtained by MSC/NASTRAN 

method which are more accurate than the photoelastic, because in MSC/NASTRAN 

method the values taken are directly at specified elements, as described before, while in 

photoelastic method this is more difficult. In addition the values taken from photoelastic 

method depend strongly on the colors and subsequently depend on the eye precision, 

skill, etc. 

 

Conclusions 

Essentially, the applied stress on the gear profile is decreased from the top land toward 

the bottom, on the involute curve, until 1.6m approximately, but beyond that stage the 

applied stress on the fillet radius region increased again. Generally MSC/NASTRAN 

method gave more uniform results than photoelastic method. Moreover, tension side has 

higher values of (Kt) than compression side. On the other side, JGMA method has higher 

values of stress in the fillet region compared with other methods selected. 
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Appendix 1    

Group Label φ (deg) N M (mm) B (mm) 

G
ro

up
 A

 

A1 20 18 20 10 
A2 20 18 20 17 
A3 20 18 20 25.4 
A4 20 18 14 10 
A5 20 18 14 17 
A6 20 18 14 25.4 
A7 20 18 10 10 
A8 20 18 10 17 
A9 20 18 10 25.4 
A10 20 18 6 10 
A11 20 18 6 17 
A12 20 18 6 25.4 

G
ro

up
 B

 

B1 20 26 20 10 
B2 20 26 20 17 
B3 20 26 20 25.4 
B4 20 26 14 10 
B5 20 26 14 17 
B6 20 26 14 25.4 
B7 20 26 10 10 
B8 20 26 10 17 
B9 20 26 10 25.4 
B10 20 26 6 10 
B11 20 26 6 17 
B12 20 26 6 25.4 

G
ro

up
 C

 

C1 25 18 20 10 
C2 25 18 20 17 
C3 25 18 20 25.4 
C4 25 18 14 10 
C5 25 18 14 17 
C6 25 18 14 25.4 
C7 25 18 10 10 
C8 25 18 10 17 
C9 25 18 10 25.4 
C10 25 18 6 10 
C11 25 18 6 17 
C12@ @ 25 18 6 25.4 

 

 

 



 

 

Appendix 2 

 

German Standard DIN 3990    

 Maximum tooth stress = Tooth root bending stress 
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- German Standard DIN 3990/E 
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This method consists of root bending stress and axial stress experienced at the line of 

maximum stress in the tooth. 

Maximum tooth stress = Tooth root bending stress + tooth axial stress 
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- JGMA Standard 401-01 

This method consists of root bending stress multiplied by a stress concentration factor. 

Maximum tooth stress = Tooth root bending ×  stress concentration factor  
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- Niemann Method  

This method consists of bending, axial and shear stress experienced at the line of 

maximum stress in the tooth root.  

Maximum tooth stress = Tooth root bending stress + tooth axial stress + tooth shear stress  
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